Corporate Technical & Energy Services
ABMCPL, Taloja

ENERGY EFFICIENCY IMPROVEMENT INITIATIVES

Sudarshan Goyal
Rashid Shaikh
CTES - GROUP CPP Services

Energy Efficiency Improvement Initiatives

- Benchmarking of Plant Performance
- Performance Improvement Studies
- Knowledge Integration Programme
- Business Intelligence Tool
- Simulation Services
Key information at a Glance
ABG businesses covered - 7
Plants covered – 48
Details of Installed equipment's
 143 Power Boilers
 123 turbines
 58 DG sets
Total Installed Capacity: **4600 MW**

Web based tool for CPP data collection

Benchmark Parameters:
 PLF
 Cost of Fuel/ Cost of Power
 Boiler Efficiency
 Auxiliary power consumptions
 Boiler and TG availability
 DG Performance
 Export / Import power
Benchmarking: Group wide studies

GroupWise Comparison of Boiler Performance
- Boiler Efficiency
- Fuel GCV
- Boiler Parameters
- APH Performance
- Fan Performance

GroupWise Comparison of Turbine Performance
- Turbine Heat Rate
- Condenser Performance Water Cooled and Air Cooled
- Heater – HP & LP Heater Performance
Performance Improvement Studies

- CPP Energy Audits
- Performance Test
 - Boiler
 - Turbine
 - Air Preheater/Economizer
 - Feed water heaters
 - Condensers
 - Utilities - Pumps, Cooling tower, Compressors, fans etc.
 - Steam distribution
CPP Business Intelligence (BI) Tool

- BI tool monitors all critical parameters continuously and shows trend and variations.
- BI tool continuously monitors and calculates power plant parameters like
 - Boiler efficiency,
 - Turbine heat rate,
 - APH Performance
 - Station heat rate.
- It provides a drill down analysis up to multiple levels in case of any deviation.
- It gives a comparative analysis of power plant KPIs.
- Pilot project for UltraTech Cement, Kotputli and Tadipatri Unit.
CPP Business Intelligence (BI) Tool
Boiler

- Below Normal
- Normal
- Above Normal
- Out of Range
CPP Business Intelligence (BI) Tool

Boiler root cause analysis
CPP Business Intelligence (BI) Tool

Impact Analysis

Pilot project for UltraTech Cement, Kotputli and Tadipatri Unit.

Weekly Financial Impact

<table>
<thead>
<tr>
<th></th>
<th>Unit</th>
<th>Unit 1</th>
<th>Unit 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deviation in Boiler</td>
<td></td>
<td></td>
<td>0.72</td>
</tr>
<tr>
<td>Efficiency %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deviation in Turbine Heat</td>
<td>kcal/kWh</td>
<td>151.8</td>
<td></td>
</tr>
<tr>
<td>Rate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Financial Impact of</td>
<td>Rs Lacs</td>
<td>4.0</td>
<td>0.78</td>
</tr>
<tr>
<td>Performance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Financial Impact for</td>
<td>Rs Lacs</td>
<td>4.78</td>
<td></td>
</tr>
<tr>
<td>Week</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CPP Simulation: Ebsilon Professional

- Analysis integrated system of multiple Units
- Cogeneration plant analysis
- Operation & Maintenance Planning
- Performance prediction for new component
- Performance analysis of components
- Retrofit benefit analysis
- Design & Optimization
- What-if analysis
Simulation Methodology

Design Data collection

Operating Data collection

Simulation of operating conditions

Validation of design Model

What if /Gap Analysis

INFERENCES ON PLANT RELIABILITY AND ENERGY CONSERVATION
TG Simulation for UltraTech Cement

100% DESIGN LOAD CONDITION

Capacity: 25 MW
Steam consumption: 99.4 TPH
Gross Heat Rate: 2429 Kcal/kWh
TG Simulation for UltraTech Cement

ACTUAL OPERATION 111.6 TPH, 25.9 MW

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Design</th>
<th>Actual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load (MW)</td>
<td>25</td>
<td>25.9</td>
</tr>
<tr>
<td>Input steam (TPH)</td>
<td>99.4</td>
<td>111.6</td>
</tr>
<tr>
<td>Heat rate (Kcal/kWh)</td>
<td>2429</td>
<td>2635</td>
</tr>
<tr>
<td>TTD of HPH</td>
<td>4.9</td>
<td>5.2</td>
</tr>
<tr>
<td>DCA of HPH</td>
<td>3.0</td>
<td>14.7</td>
</tr>
<tr>
<td>TG Stage 1 η%</td>
<td>77.53</td>
<td>70.55</td>
</tr>
<tr>
<td>TG Stage 2 η%</td>
<td>89.60</td>
<td>81.80</td>
</tr>
<tr>
<td>TG Stage 3 η%</td>
<td>82.47</td>
<td>71.74</td>
</tr>
<tr>
<td>TG Stage 4 η%</td>
<td>82.47</td>
<td>71.74</td>
</tr>
</tbody>
</table>
Root causes of 190 kCal/kWh heat rate increase was identified.

Major reason of 125 kCal/kWh heat rate increase was because of lower 3\(^{rd}\) stage efficiency.

Other reasons like performance deterioration of feed water heaters were also identified.

<table>
<thead>
<tr>
<th>Gasp Analysis</th>
<th>Difference in heat rate in kcal/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due to turbine stages – LOSS</td>
<td>189.5</td>
</tr>
<tr>
<td>Due to heaters – LOSS</td>
<td>11.4</td>
</tr>
<tr>
<td>Due to Inlet steam condition- GAIN</td>
<td>9.5</td>
</tr>
<tr>
<td>Total Heat rate deviation</td>
<td>191.4</td>
</tr>
</tbody>
</table>

- Identified saving was more than INR 300 Lacs.
- Implementation is under progress
Thanks